Genetic suppression of seizure susceptibility in Drosophila.

نویسندگان

  • D Kuebler
  • H Zhang
  • X Ren
  • M A Tanouye
چکیده

Despite the frequency of seizure disorders in the human population, the genetic and physiological basis for these defects has been difficult to resolve. Although many genetic defects that cause seizure susceptibility have been identified, the defects involve disparate biological processes, many of which are not neural specific. The large number and heterogeneous nature of the genes involved makes it difficult to understand the complex factors underlying the etiology of seizure disorders. Examining the effect known genetic mutations have on seizure susceptibility is one approach that may prove fruitful. This approach may be helpful both in understanding how different physiological processes affect seizure susceptibility and in identifying novel therapeutic treatments. In this study, we have taken advantage of Drosophila, a genetically tractable system, to identify factors that suppress seizure susceptibility. Of particular interest has been a group of Drosophila mutants, the bang-sensitive (BS) mutants, which are much more susceptible to seizures than wild type. The BS phenotypic class includes at least eight genes, including three examined in this study, bss, eas, and sda. Through the generation of double-mutant combinations with other well-characterized Drosophila mutants, the BS mutants are particularly useful for identifying genetic factors that suppress susceptibility to seizures. We have found that mutants affecting Na+ channels, mle(napts) and para, K+ channels, Sh, and electrical synapses, shak-B(2), can suppress seizures in the BS mutants. This is the first demonstration that these types of mutations can suppress the development of seizures in any organism. Reduced neuronal excitability may contribute to seizure suppression. The best suppressor, mle(napts), causes an increased stimulation threshold for the giant fiber (GF) consistent with a reduction in single neuron excitability that could underlie suppression of seizures. For some other double mutants with para and Sh(KS133), there are no GF threshold changes, but reduced excitability may also be indicated by a reduction in GF following frequency. These results demonstrate the utility of Drosophila as a model system for studying seizure susceptibility and identify physiological processes that modify seizure susceptibility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seizure Suppression by shakB, a Gap Junction Connexin Mutation in Drosophila

Gap junction proteins mediate electrical synaptic transmission. In Drosophila, flies carrying null mutations in the shakB locus, such as shakB 2 , have behavioral and electrophysiological defects in the giant fiber (GF) system neurocircuit consistent with a loss of transmission at electrical synapses. The shakB 2 mutation also affects seizure-susceptibility. Mutant flies are especially seizure-...

متن کامل

Seizure Suppression by shakB, a Gap Junction Mutation in Drosophila

Song, Juan and Mark A. Tanouye. Seizure suppression by shakB, a gap junction mutation in Drosophila. J Neurophysiol 95: 627–635, 2006. First published September 28, 2005; doi:10.1152/jn.01059.2004. Gap junction proteins mediate electrical synaptic transmission. In Drosophila, flies carrying null mutations in the shakB locus, such as shakB, have behavioral and electrophysiological defects in the...

متن کامل

Seizure suppression by shakB2, a gap junction mutation in Drosophila.

Gap junction proteins mediate electrical synaptic transmission. In Drosophila, flies carrying null mutations in the shakB locus, such as shakB2, have behavioral and electrophysiological defects in the giant fiber (GF) system neurocircuit consistent with a loss of transmission at electrical synapses. The shakB2 mutation also affects seizure susceptibility. Mutant flies are especially seizure-res...

متن کامل

Modifications of seizure susceptibility in Drosophila.

In a given population, certain individuals are much more likely to have seizures than others. This increase in seizure susceptibility can lead to spontaneous seizures, such as seen in idiopathic epilepsy, or to symptomatic seizures that occur after insults to the nervous system. Despite the frequency of these seizure disorders in the human population, the genetic and physiological basis for the...

متن کامل

Seizure suppression by gain-of-function escargot mutations.

Suppressor mutations provide potentially powerful tools for examining mechanisms underlying neurological disorders and identifying novel targets for pharmacological intervention. Here we describe mutations that suppress seizures in a Drosophila model of human epilepsy. A screen utilizing the Drosophila easily shocked (eas) "epilepsy" mutant identified dominant suppressors of seizure sensitivity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 86 3  شماره 

صفحات  -

تاریخ انتشار 2001